Learning Bayesian Networks for Regression from Incomplete Databases
نویسندگان
چکیده
In this paper we address the problem of inducing Bayesian network models for regression from incomplete databases. We use mixtures of truncated exponentials (MTEs) to represent the joint distribution in the induced networks. We consider two particular Bayesian network structures, the so-called näıve Bayes and TAN, which have been successfully used as regression models when learning from complete data. We propose an iterative procedure for inducing the models, based on a variation of the data augmentation method in which the missing values of the explanatory variables are filled by simulating from their posterior distributions, while the missing values of the response variable are generated using the conditional expectation of the response given the explanatory variables. We also consider the refinement of the regression models by using variable selection and bias reduction. We illustrate through a set of experiments with various databases the performance of the proposed algorithms.
منابع مشابه
Learning Bayesian networks from incomplete databases using a novel evolutionary algorithm
This paper proposes a novel method for learning Bayesian networks from incomplete databases in the presence of missing values, which combines an evolutionary algorithm with the traditional Expectation Maximization (EM) algorithm. A data completing procedure is presented for learning and evaluating the candidate networks. Moreover, a strategy is introduced to obtain better initial networks to fa...
متن کاملLearning Bayesian Networks from Incomplete Databases
Bayesian approaches to learn the graphical structure of Bayesian Belief Networks (BBNs) from databases share the assumption that the database is complete, that is, no entry is re ported as unknown. Attempts to relax this assumption involve the use of expensive it erative methods to discriminate among dif ferent structures. This paper introduces a deterministic method to learn the graphical s...
متن کامل Structure Learning in Bayesian Networks Using Asexual Reproduction Optimization
A new structure learning approach for Bayesian networks (BNs) based on asexual reproduction optimization (ARO) is proposed in this letter. ARO can be essentially considered as an evolutionary based algorithm that mathematically models the budding mechanism of asexual reproduction. In ARO, a parent produces a bud through a reproduction operator; thereafter the parent and its bud compete to survi...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems
دوره 18 شماره
صفحات -
تاریخ انتشار 2010